大电容方案降低涟波延长电解质电容寿命
有一个简单的概念是应用升压解决方案来恢復以交流电整流驱动大量LED灯串时损失的电压,且仍保持在低压限制中,这大约是前端消耗的27瓦(在92%效率下的24.5瓦LED),故显而易见,系统是如何在单一附件下拓展成每个线路都受到完整保护的高规格设计。
若进一步採用四条这样的电路,则每条线路均能达成完整保护和控制的100瓦设计目标,为实现此一架构,则可能在前端使用一个一般的整流器(只需要×4电流率的桥接二级管和C1/C2的×4电容)。此外,LED照明设计如果在低电压系统下有300~600瓦的可用电力,25安培的总电流对设计人员而言就具有很多选择。举例来说,从D1~D4需要被规範出最大电压和电流的余量(Headroom)。输出的电容可用下列方程式表示:
C=0.7(I)/ΔE(f)
其中,I代表到下游电路的输入电流(直流对直流转换区),ΔE为可允许的涟波电压,而f则是交流电频率。由于此设计有92%的效率,鑑于LED功率为24.5瓦,这代表前端的直流对直流区将有26.6瓦的功率;而在整流(34VDC)后,从24VAC的电源使用26.6瓦并产生约782毫安培的平均输入电流,如此一来,将可适当调整二级管整流器的规格。
另一方面,可接受的涟波也影响着电容的需求,举例来说,执行一个800毫安培的输入电流,且在120Hz线路上允许一个1伏特的涟波(因桥接整流器的关係为2×60Hz)需要9,300μF的大电容;如果是3伏特的涟波则只需要1,500μF,由于降低涟波对电解质电容的寿命提供较佳的保护,故此情况下,大电容将是可能採取的选择方案。
小型阵列设计挑战重重降低电容温度势在必行
另一个极端的设计範围是小型阵列设计,该设计可能是单一LED元件或是一个单独的组件中包含叁个元件,可让1瓦变成3瓦的现代化LED照明效率解决方案,在环境和公园照明设备中颇受欢迎。
小型阵列设计对105℃额定值的电容而言,让它们保持冷却在65℃及更低的温度,为此设计中较薄弱的环节;不过,由于电解质电容每低于额定温度10℃,就能增加一倍的使用寿命,意味着若一个设计师可维持65℃或更佳的温度状况,105℃额定电容将能延长十六倍的额定寿命,在此比率下,5,000小时的额定电容可延长到80,000小时,对小型阵列设计来说,虽为极大的挑战但仍势在必行。
由此可证,良好的热能设计在LED应用扮演关键角色,且使用有效率的驱动器如LM3429,则使设计挑战更容易解决。在此设计上,最热门的装置是单结型场效应电晶体(FET)M1开关,其可达到约65℃的温度表现,虽然并没有多大影响,但是设计者必须确定它与其他重要热源均与电解质电容保持距离,且所有板上的元件都保持在50℃以下,可见从LED散出的热能永远是最大的挑战,而不是电子学。
小型阵列设计获橱柜/展示用照明青睐
橱柜和展示用照明是低电压交流电系统中,关于小型阵列设计的另一个受欢迎应用,可考虑一个3伏特正向电压、350毫安培、1瓦的LED,搭载一个简单的12VAC系统,即可因降压转换器的架构提供充分余量,并可有效率的驱动LED.如图2所示,LM3407提供一个350毫安培的输出限制、小型封装,和极少的外部元件,以驱动此类型的LED.由于低功率消耗的设计(在输入端稍为超出1.5W)概念,可在一个单独的低电压12VAC电路支援多达两百个模组,若使用24VAC系统操作,则可超过两百五十个(大部分低电压系统的电流限制最大为25安培)。
图2符合小型阵列设计的LM3407採用12VAC系统,可驱动电流为350毫安培的3Vf单一LED
反观交流对直流(AC-DC)的转换则是以大型阵列设计处理,基于直流对直流转换区的输入电流,可为输入整流二极管和保持电容选择适当值。在此设计中,小于100毫安培的输入电流和允许2伏特涟波约需290μF电容,因此,330μF将能轻易实现这样的需求。
有一项额外考虑係针对较小负载设计而生,主要係一次侧变压器的工作可能需要某一个最低负荷,当处在非常小且低功耗的系统中,便须要特别考量此问题。以一个60瓦低电压交流变压器而言,可能需10瓦的负载才能正常运行,而LED装置的效率可根据主电源的供应範围处理该问题。
举例来说,在美国国家半导体的RD-148参考设计中,运用LM3405A展示在12VAC系统下驱动一个3.6Vf、600毫安培的单一LED解决方案。而基于该参考设计架构的LM3405A和LM3407均适用于在较小灯光模组中,因其有较小的封装尺寸(LM3405A採SOT23封装)和极少的外部元件。透过RD-148的实例,将能简易实行一个尺寸为14毫米×21.5毫米的完整解决方案,甚至是更小的解决方案也可能实现。
实现中型阵列系统热能管理至为关键
目前中型设计(中型阵列,但许多个别系统)已提出最新的进展,藉由使用单一封装的较大多组件阵列就能提高照明输出,且有更好的效率和热能管理技术。欲完成此种设计,可考虑一个10.5伏特的Vf暖白光阵列,和一个典型的640毫安培电流。值得注意的是,维持阵列在典型的电流或适当的热能管理设计,特别能延长产品寿命,甚至是在高温有害的环境中,虽然这对许多IC驱动器是很困难的挑战,但在市场需求的推动之下,可预期不久之后就有大量符合此需求的产品出现。然而,在经过几个设计循环后,产业界便发现许多整合FET的驱动器,对于热能设计有处理上的困难。
承续上述论点,许多整合FET的产品在30℃环境温度下操作,其IC接面点温度超过90℃,这代表元件在外部环境建议的操作温度下,只有35℃的余量(到达150~160℃时就会进入热能关机,但最大的建议操作温度是125℃),这对热能机械设计来说是很难处理的,故须确保该情况不会在LED的应用上发生。
热能挑战迎刃而解高整合控制器功不可没
总括来说,60℃温差的热能循环(从LED帽到焊接点,一直到驱动板)在设计上并不完美。谈到LED的使用寿命和可靠性,热能永远是必须解决的问题,而图3所示的LM3409控制器就是一个优异的选择,它能让设计者透过各种外部元件将热能排出,以一个低成本的P-Channel金属氧化物半导体场效电晶体(PFET)外部元件为例,藉由使用LM3409就能显着降低系统温度,而其中最热的元件应该是53℃的PFET.
由于LM3409的接面温度是43℃,而所有测试都在30℃环境温度下进行,这表示其拥有充分的热能余量,也使设计者更容易达到热能设计的目标。此外,LM3409係一个高度整合的控制器,特别是用于固定电流的LED驱动应用中,所以只需要少数的外部元件,便可以解决尺寸问题和降低生产成本。
图3适合中型阵列设计的LM3409採用12VAC系统,可驱动640毫安培电流和10.4伏特的LED阵列封装
LM3409亦具有容易进行调光控制的优势,不论是PWM调光(在EN接脚上)或是类比调光,均可藉由一个电压分压器隔开主要输入轨来获得类比调光功能,如此一来,就能在输入电压直接降低时,连带使LED电流下降,以达到设计弹性。其次,如果要求绝对色彩準确性或其他特殊的调光功能,则可使用PWM讯号(外部的微控制器或类似装置所提供)或是类比IADJ接脚,完成此一需求。
另一方面,LM3409具有两个有效的监视电流迴路,一个是设置在高端电流感测电阻RSNS,另一个直接在ISENS.设计者有叁个方法经由ISENS来达到类比调光,首先是透过ISENS开路以让RSNS控制LM3409;再者係提供接脚一个从0~1.24伏特的外部电压(由RSNS设置时1.2伏特是最大输出);或可从接脚到地面连结一个分压器以改变电流(永远将RSNS设置到最大)。
透过以上叁种方式,在交流电转换成直流电后,经由电压分压器到主输入轨就能轻易连结;不过若选择电压分配器在1.24伏特时,则可拥有最大的输入电压(12VAC系统16.97V,24VAC系统33.94V),因此,当输入电压较低时,理所当然会产生一个较低的光源输出。
而值得讨论的是,该情况与不具典型调光装置驱动器的差别,或没有这个连结的话,LM3409将如何表现。
由于上述情况均是针对直流对直流的调节器,所以会有输入到输出改变的自然情形,有鑑于此,想要对一个固定的电压或电流加以控制的想法便应运而生。举例来说,若不提供一个调光讯号,电路就会尝试维持电流的规格,直到输入电压接近输出电压(LED驱动电压),且输出电平将不会改变,直到输入端进入电路讯号损耗区(通常是在降压调节器运作下驱动电流时,输入的伏特数高于所要求的输出),当输入电压开始下降时,输出电压也随着快速减少。
反观在PFET控制器的调节下,LM3409只有小範围的改变,能够在整个工作週期下,维持非常低的损失,其使用类比调光功能可以线性方式降低LED电流,使LED具备可调光的设计,在开关关闭前达到欠压锁定设定(或者可以用极小的输出电压驱动LED)。藉由改变电压的方式来达到调光功能,已能有效的控制输入线路,而在交流对直流的前端,则需要额外的电容以达到光源输出后,所造成的输入涟波最小化。
此外,透过直接连结调光功能到输入电压,可不须顾虑LED驱动器的稳定度。除非充分过滤,否则输入线路的任何暂时状态都会显示在输出上。因此,该连结方式较不受到支持,除非须要使用调光功能,让IADJ维持开路。
另一方面,低电压TRIAC调光装置也可能会带来设计上的挑战。使用调压变压器或以交流低电压波形降低峰值的低电压调光系统,若使用类似的电路就可以良好的运作,不过,TRIAC调光系统需要额外的电路用以适当的解码截波波形。
低电压交流电系统结合LED照明解决方案大小通吃
总结而言,低电压交流电系统结合LED照明效能,可提供设计者创造各式各样从小型到大型照明解决方案的能力。美国国家半导体拥有适用于24VAC和12VAC系统广泛的产品组合,以协助实现其设计,在五花八门的产品阵容下,决定使用那种解决方案则取决于组件的特色,以及所需的解决方案尺寸。
尤其须要注意的是,整体系统的设计须透过现今驱动器的一些特性与进展,才能作出正确的决定,并使设计变得更简易、更健全和有效降低成本。拥有完备的解决方案知识,将能够进一步实现兼具快速及成本效益的解决方案,亦让设计人员拥有许多可用的选择。
不仅如此,低电压交流电LED在简化设计方面也提供稳定的电路分析,有关这些优点都能节省设计时间和金钱,同时也能提升产品的可靠性。