返回主站 | 设为首页 | 加入收藏      
   
 
  首页 关于我们 产品展示 方案设计 技术分享 行业资讯 联系我们  
 
马达驱动IC/步进电机控制芯片
三相无感BLDC直流无刷电机驱动IC
单相直流无刷电机驱动芯片
直流无刷电机驱动IC
有刷直流电机驱动IC
步进电机驱动芯片(并行接口)
步进电机驱动芯片(步进/方向接口&串行接口)
静音步进电机驱动芯片
功放IC
电源管理IC
马达驱动IC/步进电机控制芯片
数模(DAC)/模数(ADC)转换芯片
智能处理器
音量控制IC
模拟开关IC
电容式触摸感应IC
RGB LED呼吸趣味灯驱动IC
音频CODEC IC
方案设计
电压电平转换器IC
运算放大器
I/O扩展器IC
 
名称:
种类:
类别:

业务洽谈:

联系人:张顺平 
手机:17727550196(微信同号) 
QQ:3003262363
EMAIL:zsp2018@szczkjgs.com

联系人:姚红霞 
手机:17727550195 (微信同号)
QQ:3003214837
EMAIL:3003214837@qq.com

负责人联络方式:
手机:13713728695(微信同号) 
QQ:3003207580 
EMAIL:panbo@szczkjgs.com
联系人:潘波

 
当前位置:首页 -> 技术分享
EMI干扰来源和抑制措施精讲
文章来源:永阜康科技 更新时间:2020/10/13 9:08:00

EMI,电磁干扰度,描述电子、电气产品在正常工作状态下对外界的干扰;EMI又包括传导干扰CE(conduction emission)和辐射干扰RE(radiation emission)以及谐波harmonic

干扰源、耦合途径和敏感设备并称电磁干扰三要素,对于电源模块来说,噪声的产生在于电流或电压的急剧变化,即di/dt或dv/dt很大,因此高功率和高频率运作的器件都是EMI噪声的来源。

解决方法就是要将干扰三要素中的一个去除,如屏蔽干扰源、隔离敏感设备或切断耦合途径。因为无法让电磁干扰不产生,只能用一定的方法去减少其对系统的干扰,下面分析下常见的6个干扰来源和抑制措施。

1、外界干扰的耦合

输入端是电源的入口处,内部的噪声可由此处传播到外部,对外界造成干扰。常用抑制措施是在输入加X电容和Y电容,及差模和共模电感对噪声和干扰进行过滤。

输出端如果是有长引线的情况,电源模块跟系统搭配后,内部一些噪声干扰可能会由输出线而耦合到外界,干扰到其它用电设备。

一般是加共模和差模滤波,还可以在输出线串套磁珠环、采用双绞线或屏蔽线,实现抑制EMI干扰。

2、开关管

电源模块由于开关管结电容的存在,在工作时,开关管在快速开关后会产生毛刺和尖峰,开关管的结电容和变压器的绕组漏感也有可能产生谐振而发出干扰。

抑制方法有:

1、开关管D和G极串加磁珠环,减小开关管的电流变化率,从而实现减小尖峰。

2、在开关管处加缓冲电路或采用软开关技术,减小开关管在快速工作时的尖峰,使其电压或电流能缓慢上升。

3、减小开关管与周边组件的压差,开关管结电容可充电的程度会得到一定的降低。

4、增大开关管的G极驱动电阻。

3、变压器

变压器是电源模块的转换储能组件,在能量的充放过程中,会产生噪声干扰。漏感可以与电路中的分布电容组成振荡回路,使电路产生高频振荡并向外辐射电磁能量,从而造成电磁干扰。

一次绕组与二次绕组之间的电位差也会产生高频变化,通过寄生电容的耦合,从而产生了在一次侧与二次侧之间流动的共模传导EMI电流干扰。

抑制方法有:

1、变压器加屏蔽,电屏蔽是指将初级来的干扰信号与次级隔离开来。可在初、次级之间包一层铜箔(内屏蔽),但头尾不能短路,铜箔要接地,共模传导干涉信号通过电容-铜箔-接地形成回路,不能进入次级绕组从而起到电屏蔽的作用。

磁屏蔽是在变压器外部线包包首尾相连的铜箔(外屏蔽)。铜箔是良导体,高频交变漏磁通穿过铜箔的时候会产生涡流,而涡流产生的磁场方向正好与漏磁通的方向相反,部分漏磁通就可以被抵消。

2、采用三明治绕法,可以减少初级耦合至变压器磁芯的高频干扰。由于初级远离磁芯,次级电压低,故引起的高频干扰小。

3、降低工作频率,减缓能量的快速充放。

4、一次侧和二次侧的可靠隔离,一次侧和二次侧之间的地接Y电容。

5、尽量减小变压器的漏感,改进电路的分布参数,能在一定程度减小干扰。

4、二极管

二极管在快速截止与导通的过程中会有尖峰的产生,特别是整流二极管,在反向恢复过程中,电路的寄生电感、电容会发生高频振荡,产生电磁干扰。

抑制干扰方式有加RC吸收电路,让二极管的能量能平缓的泄放,或者在其阴极管脚套一个磁珠环,使其电流不可突变以减小尖峰。

5、储能电感

抑制干扰方式有加以屏蔽或调整其参数,避免与回路的电容产生振荡。

6、PCB的布局与走线

PCB是上述干扰源的耦合通道,PCB的优劣直接对应着对上述EMI源抑制的好坏。同时其板上器件的布局和布线不合理都会造成干扰。

布局布线的注意事项:

1、减少干扰最有效的方法就是减小各个电流回路的面积(磁场干扰)和带电导体的面积及长度(电场干扰)。

2、电路中不相同的地线特别是模拟地和数字地要分开。

3、PCB的电源线和地线要尽可能宽,以减小线阻抗,从而减小公共阻抗引起的干扰噪声。

4、对于传输信号的线路一定要考虑阻抗匹配。

对于电源设计一定要多实践哦!



 
 
 
    相关产品  
CS8126T(3.1W单声道超低EMI无滤波D类音频功放IC)
ANT8821(自适应升压、超低EMI、G类4.5W双声道音频功放IC)
HT6873(3.5W低EMI防削顶单声道免滤波D类音频功率放大器)
CS8509(超低EMI、AB类/D类切换8W单声道音频功放IC)
NS4298(集成三选一输入模拟开关,带DC音量控制功能,超低EMI、无需滤波器、3W双声道AB/D类切换音频功放IC)
NS4149(超低EMI、无需滤波器、3W单声道D类音频功放IC)
NS4249(AB类/D类切换、超低EMI、无需滤波器、内置立体声耳机功能的3W双声道音频功放IC)
NS4268(集成32级DC音量控制、超低EMI、无需滤波器、立体声耳机功能、3W双声道D类音频功放IC)
HT6871(3W低EMI防削顶单声道免滤波D类音频功率放大器)
 
深圳市永阜康科技有限公司 粤ICP备17113496号  服务热线:0755-82863877 手机:13242913995