返回主站 | 设为首页 | 加入收藏      
   
 
  首页 关于我们 产品展示 方案设计 技术分享 行业资讯 联系我们  
 
马达驱动IC/步进电机控制芯片
三相直流无刷BLDC电机驱动IC
单相直流无刷电机驱动芯片
直流无刷电机驱动IC
有刷直流电机驱动IC
步进电机驱动芯片(并行接口)
步进电机驱动芯片(步进/方向接口&串行接口)
静音步进电机驱动芯片
功放IC
电源管理IC
马达驱动IC/步进电机控制芯片
数模(DAC)/模数(ADC)转换芯片
智能处理器
音量控制IC
模拟开关IC
电容式触摸感应IC
RGB LED呼吸趣味灯驱动IC
音频CODEC IC
方案设计
电压电平转换器IC
运算放大器
I/O扩展器IC
 
名称:
种类:
类别:

业务洽谈:

联系人:张顺平 
手机:17727550196(微信同号) 
QQ:3003262363
EMAIL:zsp2018@szczkjgs.com

联系人:鄢先辉 
手机:17727552449 (微信同号)
QQ:2850985542
EMAIL:yanxianhui@szczkjgs.com

负责人联络方式:
手机:13713728695(微信同号) 
QQ:3003207580 
EMAIL:panbo@szczkjgs.com
联系人:潘波

 
当前位置:首页 -> 方案设计
高可靠性电源系统的设计
文章来源: 更新时间:2014/9/15 10:01:00
高可靠性系统设计包括:采用容错设计方法、选择合适的组件以满足预期环境条件要求和符合技术标准要求。

本文专注于讨论实现高可靠性电源的半导体解决方案,这类电源包括冗余电路、电路保护和远端系统管理。文中还将重点讨论简化设计、提高组件可靠性的最新产品功能。
高可靠性电源系统要求

在理想情况下,高可靠性系统应该设计成能够避免单点故障,提供故障隔离手段,以在发生故障时使系统可以继续运行,但性能也许有一定程度的下降。高可靠性系统还应该能够控制故障,避免故障传播到下游或上游电子组件中。

内置冗余电路是一种解决方案,这种解决方案或者采取主动分担负载的并联电路形式,或者在故障未发生时处于备用等待状态。在每种情况下,故障检测和管理都需要额外的电路系统开销,因此增加了总体复杂性和成本。有些系统还采用了不同的并联电路,以增强多样性,降低共有故障机制风险,有些飞机的飞行控制系统中会采用这样的电路。

高复杂性系统提高了电源性能要求,高转换效率和良好的温度管理至关重要,因为结温每升高 10°C,IC 的寿命就大约减少一半。正如我们看到的那样,功能丰富的最新电源 IC 和专门的电源管理功能现在增强了对 IC 本身及其周围系统的保护。
电源稳压器安全功能

输出电流限制

这不是一种新功能,但是其实现已经变得越来越准确和先进,随着用户可编程功能的增加,灵活性也提高了。例如,图 1 所示的 LT3667 是一款 40V、400mA 降压型开关稳压器,具有两个故障保护的低压差线性稳压器。内部保护电路功能包括电池反向保护、电流限制、热限制和电流反向保护。该 IC 的开关稳压器部分提供开关电流限制和箝位二极管电流限制,这样在输出短路等故障情况下,就可以控制输出电流。两个线性稳压器还具备单独的用户可编程电流限制,在图 1 所示的应用例子中,由 R7 和 R8 设定为 100mA。

如果出现故障,这些措施不仅保护器件本身,还能保护下游电子组件。

3667
图 1:LT3667 故障保护、开关和线性稳压器


输入电流限制

这种功能在用光伏电池收集能量之类的电路中常见,在这类电路中,高阻抗源要求必须仔细控制电流,以防止电源电压崩溃。除了保护上游电子组件免受过载影响,输入电流限制还可作为备份电源的安全功能使用,如图 2 所示,在备份电源中,必须保护大型电容器,并对其安全充电。LTC3128 提供准确度为 ±2% 的可编程平均输入电流限制。在图中所示应用中,输入电流限制设定为 3A,超级电容器备份电路仅吸取主负载通过降压-升压型转换器未消耗的“剩余”电流。

3128

图 2:基于 LTC3128 的超级电容器备份电路


过热保护

过热保护大部分用于具备内部功率晶体管的电源稳压器 IC。在上述采用 LTC3128 的情况下,大约在 165°C 时触发过热停机,在温度降至大约 155°C 之前,该器件一直被禁止。不过,该产品还包含一个热稳压器,以在用大电流给非常大的电容器充电时,防止器件进入过热停机状态。当芯片温度超过 135°C 时,该稳压器通过逐步降低平均电流限制发挥作用。诸如 8 输出降压型稳压器 LT3375 等产品可提供一个芯片温度输出,用户能够选择设定为 3 种芯片温度门限之一。


控制多个输入源

包含一个主电源和一个冗余备份电源、也许还有一个外部辅助电源的电源系统需要一个判断系统,以决定哪个电源拥有优先权,并监视这些电源的状态。此外,判断系统必须在电源切换时防止电源系统出现交叉传导和反向馈送。LTC4417 等单芯片 IC 提供了一种解决方案,可根据用户为每个输入定义的电源门限进行验证,然后自动选择电源。

另一种方法是由两个同时运行的输入源分担负载,这样可以降低每个输入源的负担,提高可靠性,同时如果两个输入源每个的大小都适合支持整个负载的需求,那么分担负载这种方法还可以在一个输入源出故障时提供保护,这也可以提高可靠性。过去有可能采用一种简单但效率较低的二极管“或”解决方案,但是这种解决方案要求每个电源都提供有源控制,以平衡负载。图 3 显示,现在可以用单芯片解决方案完成这个任务。LTC4370 是一款均流控制器,提供反向隔离,防止一个电源的故障导致整个电源系统崩溃。

4370
图 3:LTC4370 双冗余电源分担负载


瞬态保护

军用和航空电子产品必须符合瞬态保护规格要求,例如 MIL-STD-1275 (车辆) 和 MIL-STD-704 / DO-160 (飞机)。不过,任何高可靠性系统都需要抵御电压浪涌、尖峰和纹波,而且已有专门提供这种功能的产品。尽管半导体工艺技术进步现在允许稳压器 IC 以 100V 甚至更高的输入电压工作,但是专门的瞬态保护 IC 提供更多功能和更强的控制能力。在图 4 中,LTC4364 提供 27V (用户可编程) 箝位输出,以保护下游稳压器免受电压瞬态影响,同时在输入短路或断接 / 复位情况下保持输出。

图片1

 

图片2

图片3

图 4:瞬态保护和输出保持


数字电源系统管理

新的产品正通过一种基于 I2C 的两线式 PMBus 数字接口协议来逐步整合模拟功率调节和数字控制两者的优势,以实现电源系统的远程管理。遥测和诊断数据可用于监视负载情况、读取故障记录和提供至 ±0.25% 准确度的修整和裕度调节,从而最大限度地提高系统效率和可靠性。此类系统为把维护计划从基于时间转向基于状况提供了契机,并可能在系统故障条件确立之前凸显出性能下降。


隔离型系统

高可靠性飞机电源系统包括一个隔离势垒,以避免飞机电源总线遭受下游线路可更换单元 (通常额定在几百或几千瓦) 中的故障之损害。另外,日渐增多的传感器和执行器也推动了对于较小局部隔离型电源和数据接口的需求,旨在减少源于接地环路和共模干扰的噪声诱发性问题。如今,已经有了可简化设计并提升可靠性的完整电流隔离型 BGA 模块解决方案。

无线功率传输领域中的近期开发成果包括一款采用 LTC4120 的 2W 电池充电系统,其由凌力尔特与 PowerbyProxi 公司共同开发并运用了后者的动态谐波控制 (DHC) 专利技术,该技术可在最大的发送 (TX) 至接收 (RX) 线圈距离和位置偏差下实现高效非接触式充电,而不会发生采用无线电源系统时常见的任何热问题或过压问题。

图片4

图 5:数字电源系统管理


组件选择

本文探讨了很多简化高可靠性电源设计的最新功能以及保护器件免受故障或滥用影响的产品功能。不过,至关重要的是,针对所预期的环境条件,不要忽视组件质量的重要性以及选择正确级别组件的重要性。例如,凌力尔特的军用塑封级器件 100% 经过测试,在 -55°C 至 +125°C 的温度范围内性能有保证,因此无需耗时费力地为预期环境条件非常严酷的应用电路筛选组件或定义组件的特性。


结论

通过用户可编程功能以及更先进的内置保护机制,高可靠性电源设计已经得到简化。数字电源系统管理为电源系统的远端监视及控制提供了手段,进一步提高了效率和可靠性。最后,选择信誉卓著的供应商提供的合适级别的组件,可大大减少出现质量及可靠性问题的机会率。



 
 
深圳市永阜康科技有限公司 粤ICP备17113496号  服务热线:0755-82863877 手机:13242913995