返回主站 | 设为首页 | 加入收藏      
   
 
  首页 关于我们 产品展示 方案设计 技术分享 行业资讯 联系我们  
 
马达驱动IC/步进电机控制芯片
三相直流无刷BLDC电机驱动IC
单相直流无刷电机驱动芯片
直流无刷电机驱动IC
有刷直流电机驱动IC
步进电机驱动芯片(并行接口)
步进电机驱动芯片(步进/方向接口&串行接口)
静音步进电机驱动芯片
功放IC
电源管理IC
马达驱动IC/步进电机控制芯片
数模(DAC)/模数(ADC)转换芯片
智能处理器
音量控制IC
模拟开关IC
电容式触摸感应IC
RGB LED呼吸趣味灯驱动IC
音频CODEC IC
方案设计
电压电平转换器IC
运算放大器
I/O扩展器IC
 
名称:
种类:
类别:

业务洽谈:

联系人:张顺平 
手机:17727550196(微信同号) 
QQ:3003262363
EMAIL:zsp2018@szczkjgs.com

联系人:鄢先辉 
手机:17727552449 (微信同号)
QQ:2850985542
EMAIL:yanxianhui@szczkjgs.com

负责人联络方式:
手机:13713728695(微信同号) 
QQ:3003207580 
EMAIL:panbo@szczkjgs.com
联系人:潘波

 
当前位置:首页 -> 技术分享
在 240MHz 具有 47dBm / 50dBm OIP3 的 RF / IF 放大器 使实现设计方案更容易并保证高性能
文章来源: 更新时间:2014/5/23 15:08:00

由于人们日益渴望通过智能手机、TV、GPS 和 Wi-Fi 传送数据,所以通信基础设施的有限带宽几乎被填满了。为了满足这种渴望,通信设计师定义了各种系统,将越来越多的数据塞进有限的带宽中,不过数据传输速率的提高是有代价的:需要保真度越来越高的发送和接收信号链路。

至于放大器,要忠实地再现信号并不降低原始信号质量,就需要低噪声和高线性度。在信号功率较低时,不想要的噪声必须足够低,以允许想要传输的信号上升到噪声层之上。在信号电平较高时,线性放大器必须防止不想要的谐波和互调分量屏蔽想要传送的信号。LTC6431-15 和 LTC6430-15 就实现了这两个目标。

LTC6431-15 和 LTC6430-15 是两款固定增益放大器,具备非常高的 OIP3 (线性度),有关噪声非常低。LTC6431-15 是单端射频 (RF) / 中频 (IF) 增益构件,可直接驱动 50Ω 负载,而 LTC6430-15 是差分 RF / IF 增益构件,具备更高的功率和更宽的线性带宽。这些增益构件兼具最高性能和易用性,通过在内部处理偏置、阻抗匹配、温度补偿和稳定性问题,消除了设计方案难以实现的问题。


针对低输入信号电平提供低 NF

在低输入信号电平时,噪声限制了通信系统的灵敏度。通信系统的噪声特性由噪声指数 (NF) 来表示,由输入端的“信号噪声功率比”除以输出端的“信号噪声功率比”得出,单位为分贝。放大器的输入端总是存在噪声,而且噪声与想要传输的信号一起放大。NF 表示放大器本身给信号增加了多少不想要的噪声。理想情况下,放大器的 NF 为 0dB,但是任何真实的放大器都会增加噪声,因此人们的目标是,最大限度地减少噪声损害。典型 IF 放大器具备 3dB 至 12dB 噪声指数。LTC6431-15 和 LTC6430-15 在 240MHz 时均展现出 3.3dB NF。


令人印象深刻的 OIP3 有效降低 IM 分量

线性度限制了在频率域隔离想要信号和不想要信号的能力。在输入信号电平较高时,想要的信号上升至远高于噪声层,因此噪声不是什么问题,但是放大器的线性度变得更加重要了。

如图 1 所示,如果将一个单音调注入非线性放大器,那么结果得到的是想要的音调及其谐波。通常情况下,这些谐波信号可以滤除,因为在频率域它们与想要的音调离得足够远。如果将两个音调注入一个非线性放大器,那么结果得到的是,两个想要的音调以及由众多不想要的音调极其复杂地混合在一起,这包括两个音调的谐波、两个输入音调的和与差、以及其他互调分量 (参见图 2)。



图 1:非线性器件输入端的音调在输出端产生谐波

 



图 2:非线性器件输入端的两个音调在输出端产生互调分量

互调 (IM3) 分量 (2f1 – f2 和 2f2 – f1) 是这些不想要音调的一个子集,这个互调分量子集尤其麻烦。IM3 分量可能非常靠近想要信号的频率,从而使得这些分量几乎不可能滤除掉。

放大器线性度特性最常用三阶输出截取点 (OIP3) 来表示,这是一个假想点,在这个点上,IM3 分量的功率与基频信号功率相交。LTC6431-15 展现了非常小的 IM3 分量,因此其 OIP3 非常好。当阻塞 (干扰) 信号或相邻通道靠得非常近时,最大限度降低 IM3 分量尤其重要,因为 IM3 分量的增大速度是想要音调的三倍。在不使想要信号失真的情况下,这限制了放大器能够处理的可接受的输出功率,因此也就限制了输入功率。

噪声 (用 NF 表示其特性) 限制了放大器对小幅度输入信号的灵敏度,而线性度 (用 OIP3 表示其特性) 限制了放大器对大幅度输入信号的灵敏度。NF 和 OIP3 这两种衡量标准合起来,定义了放大器对一个信号的可用动态范围。


高线性度解决最难的通信问题

LTC6431-15 在 240MHz 时 OIP3 典型值为 47dBm,基本上将 IM3 分量压到了噪声层中,这样 IM3 分量就不能干扰想要信号了 (参见图 3)。LTC6430-15 也不甘示弱,在 240MHz 时其 OIP3 为 50dBm。结合其 3.3dB NF,这两款放大器都提供非常宽的动态范围,通过在高信号电平和低信号电平时保持高保真度,应对了高数据传输速率的挑战。

图 3:LTC6431-15 在 240MHz 时 OIP3 为 47dBm,基本上是将双音调信号的 IM3 分量压到噪声层中,这样 IM3 分量就不能干扰想要信号了。


易于插入不同应用中

实现 RF / IF 增益级并不总是很容易。传统上,设计师必须首先考虑电路偏置。LTC6431-15 拥有一个内部偏置电路,该电路仅需从单 5V 电源吸取 90mA 电流,而 LTC6430-15 仅从单 5V 电源吸取 160mA 电流。

该内部偏置电路优化了器件的最大线性度工作点。温度补偿电路在环境条件变化时保持性能不变,防止高温时电流流失。这些器件还有内部稳压器,以最大限度地减小电源缺陷导致的性能变化。

RF / IF 放大器在输入端和输出端还必须是阻抗匹配的,以最大限度地增大所传输的功率和减小反射。传统上,这是一项耗时费力且需要反复进行多次的任务。一般情况下,设计师必须增加输入和输出网络,以使放大器阻抗与系统阻抗相匹配,通常是 50Ω。这些匹配网络又会改变放大器的 NF 和 OIP3,通常牺牲 NF 和 OIP3 性能以实现合理的阻抗匹配。

LTC6431-15 和 LTC6430-15 放大器在 20MHz 至 1700MHz 频带范围内,在内部匹配了输入和输出阻抗,从而简化了设计,同时保持 NF 和 OIP3 不变。单端 LTC6431-15 的输入和输出在内部匹配到 50Ω,而 LTC6430-15 的输入和输出端在内部匹配到 100Ω 差分阻抗。这就允许这些器件非常容易地插入不同应用中,而无需额外增加匹配组件。


有保证的稳定性和性能

与凌力尔特的应用电路一起使用时,LTC6431-15 和 LTC6430-15 都是可无条件稳定的。A 级版本 LTC6431-15 在 240MHz 时的 OIP3 特性是单独地表示的,保证 44dBm 的最小 OIP3。类似地, A 级版本 LTC6430-15 在 240MHz 时的 OIP3 也是单独表示的,保证 47dBm 的最小 OIP3。


一类全新的 RF 放大器

凌力尔特在生产卓越的运放型放大器方面拥有悠久历史,这类放大器能够以最低噪声和低失真来处理低频信号。尽管 LTC6431-15 和 LTC6430-15 不能像运放那样放大 DC 信号,但是它们能够放大高达 2GHz 的信号。运算放大器一般难以在高于 200MHz 时工作。

使用运算放大器时,一般需要增加反馈以设定增益。提高电压反馈运算放大器的增益会进一步减小工作带宽。另一方面,凌力尔特的 RF 型放大器提供 15dB 固定功率增益。RF 解决方案缺乏增益调节通用性,但是可用带宽远远超过了可从运算放大器获得的带宽。

运算放大器用来驱动高阻抗负载,而 LTC6430 / LTC6431 放大器可驱动 50Ω 负载,并在很宽的频率范围内 (20MHz 至 1700MHz) 实时提供功率。与运算放大器不同,这种专注于 RF 的设计在输入和输入端不需要终端电阻,因为已经在内部实现了阻抗匹配。输入端的终端电阻增加噪声,输出端的终端电阻衰减提供给负载的功率。因此,这两款 RF 放大器解决方案提供了更好的总体噪声性能和线性度。LTC6430-15 和 LTC6431-15 放大器为不需要 DC 耦合的 AC 信号应用提供了卓越的解决方案。


LTC6431-15 单端 50Ω 放大器

单端 LTC6431-15 是多种应用的理想解决方案。该器件作为 IF 放大器使用时表现十分出色,克服了滤波器损耗问题,或者作为 ADC 驱动器与平衡-不平衡转换器一起使用时,表现也同样出色。凭借很宽的带宽,LTC6431-15 可涵盖整个 CATV 频带。

图 4 所示是一个单端 IF 放大器,图 5 所示是 LTC6431-15 的评估板和在 100MHz 至 1700MHz 的性能。

图 4:单端 IF 放大器

 


图 5:100MHz 至 1700MHz 单端 LTC6431-15 评估板和性能,显示了 LTC6430-15 和 LTC6431 的 OIP3 随频率的变化。


LTC6430-15 差分应用

能够以差分方式配置 LTC6430-15 的输入和输出使该器件能够适用于各种系统应用,在以下各例中,LTC6430-15 的高线性度、低噪声和宽频带性能经受住了考验。

在以下第一个例子中,LTC6430-15 的差分输出与 ADC 的差分输入很相配。LTC6430-15 的输入 / 输出在内部匹配到 100Ω 差分阻抗。就驱动高速 ADC 而言,100Ω 阻抗非常便利。接下来,在一个平衡配置中,运用 2:1 平衡-不平衡转换器,LTC6430-15 以低失真提供宽带放大,驱动 50Ω 负载。最后,运用 1.33:1 平衡-不平衡转换器,LTC6430-15 可匹配至 75Ω 系统,以跨整个 CATV 频带提供宽带放大。
ADC 驱动器

LTC6430-15 作为高速、高分辨率 ADC 驱动器使用时表现出色。这类应用的挑战是,驱动未缓冲 ADC 输入,使其达到所要求的输入电压值,同时保持 ADC 的信噪比 (SNR) 和无寄生动态范围 (SFDR) 不变。正如评估电路的性能测试结果所示,LTC6430-15 能够在 LTC2158 (双通道、14 位、310Msps ADC) 的整个输入带宽范围内驱动该 ADC,而且 SFDR 和 SNR 受到的影响极小。

针对这一高速、高分辨率 ADC,表 1 显示了 SNR 和 SFDR 的最小减额。LTC6430-15 的高线性度和低噪声允许设计师在 ADC 输入端以最低的滤波要求驱动该 ADC。所有测量值都是从单个应用电路得出的,未调整匹配网络。这突出显示了 LTC6430-15 的宽带宽和高线性度性能。


表 1: ADC 驱动器评估电路随频率变化所得结果总结

 

LTC6430 / LTC2158

组合电路

LTC2158 ADC

频率 (MHz)

1M

SFDR

SNR

1M

SFDR

SNR

250

–87

73.8

63.1

–95

78

66.5

300

–86

77.5

62.8

–94

78

65.5

400

–87

75.0

62.3

–92

78

64.5

500

–101

75.7

61.5

–84

70

63.0

600

–88

72.0

60.7

–88

62.5

62.5

700

–92

67.5

60.0

–86

62.0

61.0

800

–94

84.0

59.5

–85

61.5

60.0

900

–82

73.0

58.6

–80

61.0

59.0

1000

–85

61.4

58.1

–83

60.5

58.0

平衡放大器驱动 50Ω 负载

采用恰当配对的 2:1 平衡-不平衡转换器,LTC6430-15 能够以低噪声和低失真提供宽带放大。在这种平衡配置中,放大器在输入端和输出端匹配至 50Ω。这种平衡配置还具有抑制二阶失真的优势,这在多倍频程宽带应用中是至关重要的。

不幸的是,单个平衡-不平衡转换器不能涵盖 LTC6430-15 的整个工作频带。凌力尔特提供多种覆盖该放大器拟用带宽的评估电路。这些评估电路的输入和输出端已经转换到 50Ω,以减轻特性测试负担。这些评估电路也展现了 LTC6430-15 用于没有平衡-不平衡转换器的纯差分应用时的性能。

测试结果显示,针对感兴趣的频率,选择正确的平衡-不平衡转换器是很重要的。由于带宽受限,平衡-不平衡转换器限制了 LTC6430-15 的性能。总之,这三个平衡电路都显示,用 LTC6430-15 可获得高线性度和宽带宽。


CATV 应用

CATV 应用电路是本文中显示 LTC6430-15 通用性的最后一个例子。CATV 给放大器带来了独特挑战。所需频带常常涵盖超过四倍频程,放大器必须拥有平坦的增益曲线,阻抗必须与 75Ω 环境匹配。多通道数目要求卓越的三阶线性度,而且由于多倍频程环境,也必须抑制二阶分量。LTC6430-15 运用一对 1.33:1 平衡-不平衡转换器,将内在 100Ω 差分阻抗转化为 75Ω,可应对这些挑战。

考虑到其低噪声、低二阶和三阶失真以及平坦的增益曲线,这个电路可以满足 CATV 要求,同时仅从 5V 电源吸取 800mW 功率。
基于硅的工艺帮助实现更高的可再生性

LTC6431-15 和 LTC6430-15 是采用高性能 SiGe BiCMOS 工艺制造的,相比之下,其他 RF 增益构件则是用 GaAs 晶体管制造的。与可比的 GaAs 工艺相比,运用基于硅的工艺可实现更高的可再生性。BiCMOS 工艺还使凌力尔特能够在这些器件中集成失真消除、偏置控制和稳压器功能。


结论

LTC6431-15 和 LTC6430-15 以最低的 DC 功耗实现了同类最佳的噪声性能和线性度,满足了现代通信标准要求,并简化了 RF / IF 设计。这两款器件易于使用、具备通用性并能够在各种各样的条件下保证高性能。



 
 
 
    相关产品  
 
深圳市永阜康科技有限公司 粤ICP备17113496号  服务热线:0755-82863877 手机:13242913995